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A B S T R A C T

Modern experiments typically involve a very large number of variables. Screening designs allow
experimenters to identify active factors in a minimum number of trials. To save costs, only
low-level factorial designs are considered for screening experiments, especially two- and three-
level designs. In this article, we provide a systematic method to construct screening designs
that contain both two- and three-level factors based on Hadamard matrices with the fold-over
structure. The proposed designs have good performance in terms of D-optimal and A-optimal
criteria, and the estimates of the main effects are unbiased by the second-order effects, making
them very suitable for screening experiments. Besides, some theoretical results on D- and
A-optimality are obtained as a by-product.

. Introduction

Screening experiments are frequently used to identify dominant factors out of a large number of potential factors. The active
actors will be investigated further in some follow-up experiments, while the inactive factors will be discarded. Screening designs that
llow the experimenters to identify the active factors in a minimum number of trials (i.e., with minimum budget and resources)
re valuable in practical applications. A good screening design should be able to accommodate a large number of factors with
elatively few runs, and orthogonality or lower correlations among factorial effects are desirable properties to identify active factors
ffectively. Besides, the biases of estimates of main effects caused by the presence of active two-factor interactions are as small as
ossible. Fold-over technique is common used to deal with the issue.

Generally, to save on costs, only low-level factorial designs, especially two- and three-level factorial designs, are considered
or screening experiments. Additionally, the run size is usually not large enough for estimating all the main effects of the factors.
uch designs are called supersaturated designs. The analysis relies on the assumption of effect sparsity (Box and Meyer, 1986) that
nly a few factors are active. Some practical applications and constructions on supersaturated designs can be found in Lin (1993),
u (1993), Nguyen (1996), Tang and Wu (1997), Ai et al. (2007) and Sun et al. (2011). Georgiou (2014) is a good reference for

upersaturated designs.
Supersaturated designs commonly assume the absence of all interaction effects. However, if some of the active factors can

otentially interact with each other, then supersaturated designs cannot detect the confounding influences between main effects
nd second-order effects. To address this problem, Shi and Tang (2019) proposed a new class of fold-over supersaturated designs.
uch designs are robust to two-factor interactions but limit each factor to only two levels. To further estimate the pure-quadratic
ffects, Jones and Nachtsheim (2011) provided a useful class of economic three-level designs called definitive screening designs
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(DSDs), which require 2𝑚+1 runs consisting of 𝑚 fold-over pairs and an overall center point for 𝑚 factors. Numerical constructions
on DSDs are studied in Jones and Nachtsheim (2011) and Nguyen and Stylianou (2013). To avoid infeasible computational time,
Xiao et al. (2012) provided a systematic construction of DSDs using conference matrices. Moreover, Phoa and Lin (2015) proposed
a theoretically driven approach to construct DSDs.

However, much practical evidence indicates that some categorical factors are able to remain at two levels, while the other factors
must be at three levels, especially quantitative factors. To construct screening designs containing both two- and three-level factors,
referred to as mixed-level screening designs, Jones and Nachtsheim (2013) presented a DSD-augment method (hereafter abbreviated
as JNs). This method uses a search algorithm to convert some three-level columns of a conference matrix to two-level columns. To
do so, it needs to evaluate the determinants of 22𝑚2 information matrices, where 𝑚2 is the number of two-level factors. Hence,
if 𝑚2 is very large, this procedure will lead to a large amount of calculation. Another limitation of JNs is that as the number of
categorical factors increases, the correlations between the pure-quadratic effect columns increase and approach 1∕2. In this paper,
to save computational work and reduce the correlations between the pure-quadratic effect columns, we provide a systematic method
for constructing mixed-level screening designs.

Throughout, we assume that the response follows the second-order model, which can be written as:

𝑦 = 𝛽0 +
𝑚2+𝑚3
∑

𝑖=1
𝛽𝑖𝑥𝑖 +

𝑚2+𝑚3−1
∑

𝑖=1

𝑚2+𝑚3
∑

𝑗=𝑖+1
𝛽𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑚3
∑

𝑖=1
𝛽𝑖𝑖𝑥

2
𝑖 + 𝜖, (1)

where 𝑦 is the response variable, 𝑥1, 𝑥2, …, 𝑥𝑚3
are three-level factors, 𝑥𝑚3+1, 𝑥𝑚3+2, …, 𝑥𝑚3+𝑚2

are two-level factors, and 𝑥𝑖𝑥𝑗 and 𝑥2𝑖
are the interactions of factors and the pure-quadratic effects of three-level factors, respectively. 𝛽𝑖, 𝛽𝑖𝑗 and 𝛽𝑖𝑖 denote the unknown
onstant coefficients, and 𝜖 is the random error with zero mean and a finite variance 𝜎2. Because our goal is screening, we assume
hat the experimenters will fit the first-order model to the response at the beginning, which can be written as:

𝑦 = 𝛽0 +
𝑚2+𝑚3
∑

𝑖=1
𝛽𝑖𝑥𝑖 + 𝜖. (2)

In this paper, the primary goal is to identify the active factors using the first-order model (2), but an important secondary goal is
o use the second-order model (1) to capture the essential features of the relationship between these active factors and the response.
herefore, it is desirable that the main effects are all orthogonal to potential two-factor interactions. It turns out that the fold-over
tructure is well suited to achieve this. Accordingly, we present a construction method for mixed-level screening designs with the
old-over structure. Although the method is simple, the resulting designs enjoy some attractive properties, making them very suitable
or screening experiments.

An outline of the remainder of the paper is as follows. Section 2 provides the construction method for mixed-level screening
esigns utilizing Hadamard matrices and the fold-over structure. Section 3 demonstrates that the proposed designs possess good
roperties in terms of D-optimal and A-optimal criteria. The correlations between columns are also presented in this section. Section 4
rovides the discussion and conclusions.

. Construction of mixed-level screening designs based on Hadamard matrices

A construction method for mixed-level screening designs with 𝑚2 two-level factors and 𝑚3 three-level factors based on Hadamard
atrices and the fold-over structure is introduced in this section. First, we now introduce the definition of Hadamard matrix.

efinition 2.1 (Hedayat et al., 1999). An 𝑚×𝑚 matrix 𝐻 = (ℎ𝑖𝑗 ) is called a Hadamard matrix if it satisfies 𝐻 ′𝐻 = 𝑚𝐼𝑚, with ℎ𝑖𝑗 = ±1
𝑖, 𝑗 = 1, 2,… , 𝑚), where 𝐼𝑚 is the 𝑚-order identity matrix.

Hadamard matrices are widely used in the construction of two-level orthogonal designs. A Hadamard matrix is said to be
ormalized if its first column only contains entry +1; any Hadamard matrix can be normalized by sign-switching those rows that have
1 in the first column. Deleting the first column from a normalized Hadamard matrix of order 𝑚, we obtain a saturated orthogonal
rray of strength 2 with 𝑚 runs and 𝑚−1 factors. When there are a large scale of two-level factors, the mixed-level screening designs
ased on Hadamard matrices tend to have high D- and A-efficiencies.

Next, we provide a new construction for mixed-level screening design, denoted as HMD. The construction method employs the
ollowing steps:

tep 1. For any 𝑚 × 𝑚 Hadamard matrix 𝐻 , randomly select 𝑚2 + 𝑚3 columns (𝑚2 + 𝑚3 ≤ 𝑚), and denote the resulting matrix as 𝐻̃ ;

tep 2. Set the first 𝑚3 diagonal elements of 𝐻̃ to 0, namely, ℎ̃(𝑖, 𝑖) = 0, 𝑖 = 1, 2,… , 𝑚3, and denote the new matrix as 𝐻∗;

tep 3. Fold over 𝐻∗ and obtain the following design:

𝐷 =
(

𝐻∗

−𝐻∗

)

. (3)

The above steps provide a convenient procedure for constructing an HMD with 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3
2

hree-level factors, where 𝑚2 + 𝑚3 ≤ 𝑚. We shall illustrate the above procedure with the help of the following example.



Journal of Statistical Planning and Inference 231 (2024) 106131B. Hu et al.

I

a
T
H
i
d

e

E
𝐷

Example 2.2. We will construct an HMD with 6 two-level columns and 2 three-level columns. First, we generate a Hadamard
matrix 𝐻 of order 8 by the 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 function in 𝑅 software. Permutate the columns of 𝐻 randomly, and 𝐻̃ is one member of the
matrices after permutation. Then, we set the first 2 diagonal elements of 𝐻̃ to 0; we obtain half fraction of an HMD 𝐻∗. Folding
over 𝐻∗ leads to an HMD with 16 runs, 6 two-level columns and 2 three-level columns. 𝐻 , 𝐻̃ and 𝐻∗ are given in (4).

𝐻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; 𝐻̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 1 1 −1 −1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
−1 1 1 −1 1 −1 1 −1
−1 1 1 1 −1 −1 −1 1
−1 −1 1 −1 −1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

𝐻∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 1 1 1 1
1 0 1 −1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 1 1 −1 −1 1 −1 −1

−1 −1 1 1 1 1 −1 −1
−1 1 1 −1 1 −1 1 −1
−1 1 1 1 −1 −1 −1 1
−1 −1 1 −1 −1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

3. Design properties

In this section, we discuss the properties of the proposed designs and use the D-optimal criterion, the A-optimal criterion and
the column correlations to evaluate the performance of the proposed HMDs.

3.1. The D-optimality

The D-optimal criterion provides a scalar measure of the generalized variance of the least squares estimate of the coefficients
which minimizes the volume of the confidence region. In this paper, we use D-efficiency to compare designs with different numbers
of design points or runs (Draper and Lin, 1990), that is,

𝐷eff =
|𝑋′𝑋|

1∕𝑝

𝑛
, (5)

where 𝑋 is the model matrix of design 𝐷, 𝑋′ is the transpose of 𝑋, 𝑛 is the run size, and 𝑝 is the number of parameters in the
model.

We can now obtain the lower bound of the first-order D-efficiency under the first-order model (2) for the proposed HMD.

Theorem 3.1. Suppose an HMD given by (3) with 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors, where 𝑚2 +𝑚3 ≤ 𝑚.
f 𝑚3 ≤ 𝑚∕3, the first-order D-efficiency of the HMD has a lower bound given by:

𝐷eff (𝐷𝐻𝑀𝐷) ≥ 𝐿𝐵Deff (𝐻𝑀𝐷) =
(

1 − 𝑎
𝑏

)𝑐
, (6)

where 𝑎 = 4𝑚3 +𝑚2 (16𝑚2
3 − 24𝑚3 + 4𝑚2 − 3

)

+𝑚
(

24𝑚3 − 12𝑚2 − 16𝑚2
3
)

+ 24𝑚2𝑚3 − 16𝑚2𝑚2
3, 𝑏 = 𝑚2(2𝑚− 3)2 and 𝑐 = 𝑚3∕(𝑚2 +𝑚3 + 1).

The proof of Theorem 3.1 and later results are deferred to Appendix. Examining (6), 𝑎∕𝑏 → 0 and 𝐷eff (𝐷𝐻𝑀𝐷) → 1, if 𝑚 → ∞
nd 𝑚3∕𝑚 → 0. Hence, HMDs achieve high estimation efficiency for cases with a small scale of three-level factors. More specifically,
able 1 lists the lower bounds of the first-order D-efficiencies of HMDs for different values of 𝑚2 and 𝑚3. This further illustrates that
MDs have high first-order D-efficiencies, especially when 𝑚3∕𝑚 is small. The lower bounds of the first-order D-efficiencies listed

n Table 1 may not be tight, and the actual first-order D-efficiencies can be much higher than the bounds. Please see Table 1 for
etails.

Next, we demonstrate a higher first-order D-efficiency characteristic of the HMD compared with the JN through a specific
xample.

xample 2.2 (Continued). For the case of 𝑚2 = 6, 𝑚3 = 2, we compare the first-order D-efficiencies of HMD and JN. Let
= (𝐻∗′,−𝐻∗′)′ be the HMD with 16 runs, where 𝐻∗ is defined in Example 2.2, and let 𝐷 = (𝐻

′
,−𝐻

′
)′ be the JN with 18
3

𝐻𝑀𝐷 𝐽𝑁
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Table 1
Comparison of the first-order D-efficiencies between HMDs and JNs.
𝑚 𝑚3 𝑚2 HMDs JNs

Runs 𝐿𝐵𝐷eff
max 𝐷eff min 𝐷eff Average 𝐷eff Runs 𝐷eff

8 1 7 16 0.9701 0.9708 0.9708 0.9708 18 0.9443
8 2 6 16 0.9135 0.9466 0.9381 0.9430 18 0.9123
8 3 5 16 – 0.9270 0.9033 0.9165 18 0.8852
8 4 4 16 – 0.9118 0.8674 0.8911 18 0.8623

12 1 11 24 0.9865 0.9867 0.9867 0.9867 26 0.9667
12 2 10 24 0.9661 0.9748 0.9723 0.9737 26 0.9513
12 3 9 24 0.9202 0.9643 0.9567 0.9609 26 0.9373
12 4 8 24 0.8231 0.9550 0.9405 0.9485 26 0.9246
12 5 7 24 – 0.9449 0.9262 0.9361 26 0.9131
12 6 6 24 – 0.9379 0.9121 0.9247 26 0.9026

16 1 15 32 0.9924 0.9924 0.9924 0.9924 34 –
16 2 14 32 0.9820 0.9854 0.9844 0.9850 34 –
16 3 13 32 0.9617 0.9790 0.9759 0.9776 34 –
16 4 12 32 0.9231 0.9731 0.9667 0.9703 34 0.9512
16 5 11 32 0.8550 0.9677 0.9579 0.9633 34 0.9438
16 6 10 32 – 0.9623 0.9504 0.9562 34 0.9368
16 7 9 32 – 0.9585 0.9412 0.9490 34 0.9303
16 8 8 32 – 0.9508 0.9346 0.9423 34 0.9168

Note: JNs with 𝑚2 > 12 are not listed in this table because these designs are computational expensive. And – indicates 𝐿𝐵𝐷eff
(HMD)

does not exist.

uns, where 𝐻 generated by the construction method in Jones and Nachtsheim (2013) is given by:

𝐻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 1 1 1 1
−1 0 −1 −1 −1 1 1 1
−1 1 1 1 −1 −1 −1 1
−1 1 −1 1 1 1 −1 −1
−1 1 1 −1 1 −1 1 −1
−1 −1 1 −1 1 1 −1 1
−1 −1 1 1 −1 1 1 −1
−1 −1 −1 1 1 −1 1 1
0 0 −1 −1 −1 −1 −1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By calculation, 𝐷𝐻𝑀𝐷 has a higher first-order D-efficiency of 0.9466 than that of 𝐷𝐽𝑁 whose the first-order D-efficiency is 0.9123.

Actually, the D-efficiency values resulting from randomly selecting 𝑚2+𝑚3 columns in 𝑆𝑡𝑒𝑝1 are quite close to each other as can
e seen in Table 1. This justifies the simple and convenient technique of randomly selecting 𝑚2+𝑚3 columns in 𝑆𝑡𝑒𝑝1. All Hadamard
atrices are generated by the 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 function in 𝑅 software, and all JNs in this paper are obtained by the exhaustive search
ethods proposed by Jones and Nachtsheim (2013). This table also illustrates that HMDs have higher first-order D-efficiencies than

Ns and need fewer runs.

.2. The A-optimality

The A-optimal criterion is also related to the shape of the confidence ellipsoid, which minimizes the average variance of the
arameters. Here, we use A-efficiency to discuss the performance of HMDs in terms of the A-optimal criterion. A-efficiency can be
tated formally as follows:

𝐴eff =
𝐿𝐵

𝑡𝑟(𝑋′𝑋)−1
, (7)

where 𝑡𝑟(⋅) is the trace of the corresponding matrix, (⋅)−1 is the inverse of the corresponding matrix, 𝑋 is the model matrix of design
𝐷. Here 𝐿𝐵 = 𝑝∕𝑛 because if a matrix 𝑋 has only 0 s and ±1 s, we have 𝑡𝑟(𝑋′𝑋)−1 ≥ 𝐿𝐵 = 𝑝∕𝑛.

Next, we calculate the first-order A-efficiency for the proposed HMD under the first-order model (2).

Theorem 3.2. Suppose an HMD given by (3) with 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors, where 𝑚2 +𝑚3 ≤ 𝑚.
f 𝑚3 ≤ 𝑚∕3, the first-order A-efficiency of the HMD has a lower bound as follows:

𝐴eff (𝐷𝐻𝑀𝐷) ≥ 𝐿𝐵Aeff (𝐻𝑀𝐷) = 1 −
(𝑟 − 1)𝑚3

1 + 𝑚2 + 𝑟𝑚3
, (8)

where 𝑟 =
(𝑚2 + 𝑚2𝑚3)(𝑚 − 3∕2)2

.

4

(𝑚 − 2𝑚3)(𝑚 + 2𝑚3 − 3)(𝑚2 − 𝑚2 − 𝑚)
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Table 2
Comparison of the first-order A-efficiencies between HMDs and JNs.
𝑚 𝑚3 𝑚2 HMDs JNs

Runs 𝐿𝐵𝐴eff
max 𝐴eff min 𝐴eff Average 𝐴eff Runs 𝐴eff

8 1 7 16 0.9516 0.9525 0.9525 0.9525 18 0.9211
8 2 6 16 0.8516 0.9184 0.8988 0.9100 18 0.8777

12 1 11 24 0.9786 0.9788 0.9788 0.9788 26 0.9517
12 2 10 24 0.9386 0.9612 0.9556 0.9586 26 0.9308
12 3 9 24 0.8604 0.9467 0.9298 0.9393 26 0.9133
12 4 8 24 0.7141 0.9350 0.9040 0.9211 26 0.8990

16 1 15 32 0.9880 0.9881 0.9881 0.9881 34 –
16 2 14 32 0.9664 0.9776 0.9753 0.9765 34 –
16 3 13 32 0.9282 0.9684 0.9615 0.9653 34 –
16 4 12 32 0.8641 0.9604 0.9463 0.9543 34 0.9329
16 5 11 32 0.7608 0.9534 0.9330 0.9442 34 0.9246

Note: JNs with 𝑚2 > 12 are not listed in this table because these designs are computational expensive.

Examining (8), 𝑟 → 1 and 𝐴eff (𝐷𝐻𝑀𝐷) → 1, if 𝑚 → ∞ and 𝑚3∕𝑚 →0; and 𝐴eff (𝐷𝐻𝑀𝐷) performs well for small 𝑚3∕𝑚. For
llustrative purposes, Table 2 lists the lower bounds of the first-order A-efficiencies of HMDs for different values of 𝑚2 and 𝑚3. From
his table, we know that HMDs have large lower bounds for the first-order A-efficiencies, especially when 𝑚3∕𝑚 is small. The actual
irst-order A-efficiencies will be much higher than the lower bounds of the ones. Please see Table 2 for details.

Table 2 exhibits the first-order A-efficiencies for the cases with 𝑚2 + 𝑚3 = 𝑚, 𝑚3 ≤ 𝑚∕3 and 𝑚 = 8, 12, 16 for HMDs and JNs.
From this table, the maximum, minimum, and average of 𝐴eff for HMDs are larger than those for JNs. This implies that HMDs can
estimate the main effects more properly than JNs.

3.3. Correlations

The main objectives of screening designs are to select active factors and estimate the effects accurately. Therefore, lower
correlations among effects are preferred. Thus, we calculate the correlations among the design columns in the rest of this section.
Denote 𝜌 as the correlation between two columns, namely, 𝜇𝜇𝜇 = (𝜇1,… , 𝜇𝑛)′ and 𝜈𝜈𝜈 = (𝜈1,… , 𝜈𝑛)′. Then,

𝜌 =
∑𝑛

𝑖=1(𝜇𝑖 − 𝜇)(𝜈𝑖 − 𝜈)
√

∑𝑛
𝑖=1(𝜇𝑖 − 𝜇)2

√

∑𝑛
𝑖=1(𝜈𝑖 − 𝜈)2

,

where 𝜇 =
∑𝑛

𝑖=1 𝜇𝑖∕𝑛, 𝜈 =
∑𝑛

𝑖=1 𝜈𝑖∕𝑛. In what follows, we call |𝜌| the absolute correlation.
According to the construction method of HMDs, calculations of the correlations between design columns are straightforward as

hown by the following proposition.

roposition 3.3. For an HMD with 𝑛 = 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors (𝑚2 +𝑚3 ≤ 𝑚), the correlations
etween design columns are as follows:
(i) the correlation between two two-level design columns is 0;
(ii) the correlation between two three-level design columns is 0 or ±2

𝑚−1 ;
(iii) the correlation between a three-level design column and a two-level design column is ±1

√

𝑚(𝑚−1)
.

Proposition 3.3 demonstrates that the correlations between design columns in HMDs are either 0 or decrease to 0 as 𝑚 → +∞.
his guarantees that the HMDs can have high accuracy when screening active factors for large 𝑚.

Compared to JNs, HMDs have orthogonality of two-level columns and low correlations between three-level columns. Therefore,
e tend to favor HMDs when two-level columns have a high percentage. We now illustrate the above idea with the help of the

pecific example.

xample 2.2 (Continued). We use an absolute correlation cell plot to demonstrate the correlations between design columns for
𝐻𝑀𝐷, which are also compared with 𝐷𝐽𝑁 , as shown in Fig. 1. It is obvious that the correlation between any two two-level design

olumns is 0 for HMD. On the whole, the correlations of HMD are smaller than those of JN.

As a result of the fold-over structure of HMDs, estimates of main effects are robust not only to the presence of two-factor
nteractions but also to the presence of the pure-quadratic effects. However, when using HMDs to explore the response surface
odel, the confounding between the potential two-factor interactions and the pure-quadratic effects cannot be ignored. In the

econd-order model (1), we hope to obtain a global assessment of curvature, that is, to estimate the pure-quadratic effects accurately.
s mentioned, a lower correlation permits nearly independent estimates of effects. Thus, we further examine the correlations between

he pure-quadratic effect columns and the other second-order effect columns for HMDs. These results are provided in the following
roposition.
5
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Fig. 1. Absolute correlation cell plots of design columns for 𝐷𝐻𝑀𝐷 and 𝐷𝐽𝑁 with 2 three-level factors denoted as 𝑥1 , 𝑥2 and 6 two-level factors denoted as
𝑥3 ,… , 𝑥8.

Proposition 3.4. For an HMD with 𝑛 = 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors (𝑚2 +𝑚3 ≤ 𝑚), the correlations
between the pure-quadratic effect columns and the other second-order effect columns are as follows:

(i) the correlation between two pure-quadratic effect columns is −1
𝑚−1 ;

(ii) the correlation between a pure-quadratic effect column and a three-level factor interaction effect column involving one common factor
is 0 or ±2

√

(𝑚−1)(𝑚2−2𝑚−4)
;

(iii) the correlation between a pure-quadratic effect column and a three-level factor interaction column that involves three different factors
is ±(𝑚−2)

√

(𝑚−1)(𝑚2−2𝑚−4)
, ±(𝑚+2)

√

(𝑚−1)(𝑚2−2𝑚−4)
or ±

√

𝑚
√

(𝑚−1)(𝑚−2)
;

(iv) the correlation between a pure-quadratic effect column and a two-level factor interaction column is ±1
√

𝑚−1
;

(v) the correlation between a pure-quadratic effect column and a two-factor interaction column of a two-level design column and a
three-level design column involving one common three-level factor is ±1

√

(𝑚−1)(𝑚2−𝑚−1)
;

(vi) the correlation between a pure-quadratic effect column and a two-factor interaction column of a two-level design column and a
three-level design column involving two different three-level factors is ±(𝑚−1)

√

(𝑚−1)(𝑚2−𝑚−1)
or ±(𝑚+1)

√

(𝑚−1)(𝑚2−𝑚−1)
.

For JNs, the corresponding types of correlations also can be obtained, and the results are presented in the next remark. The proof
is similar to that of Proposition 3.4, thus is omitted here.

Remark 3.5. For a JN with 𝑛 = 2𝑚+2 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors (𝑚2+𝑚3 ≤ 𝑚), the correlations
between the pure-quadratic effect columns and the other second-order effect columns are as follows:

(i) the correlation between two pure-quadratic effect columns is 1
2 − 1

𝑚−1 ;
(ii) the correlation between a pure-quadratic effect column and a three-level factor interaction effect column involving one

common factor is 0;
(iii) the correlation between a pure-quadratic effect column and a three-level factor interaction column that involves three

different factors is ±
√

𝑚+1
√

2(𝑚−1)(𝑚−2)
;

(iv) the correlation between a pure-quadratic effect column and a two-level factor interaction column is ±2
√

2(𝑚−1)(𝑚2+2 𝑚)
,

±2𝑚
√

2(𝑚−1)(𝑚2+2 𝑚)
, ±(2𝑚+4)

√

2(𝑚−1)(𝑚2+2 𝑚)
, ±(4𝑚+2)

√

2(𝑚−1)(𝑚2+2 𝑚)
, ±(2𝑚−4)

√

2(𝑚−1)(𝑚2+2𝑚−8)
, ±(4𝑚−2)

√

2(𝑚−1)(𝑚2+2𝑚−8)
, ±6

√

2(𝑚−1)(𝑚2+2𝑚−8)
or ±6𝑚

√

2(𝑚−1)(𝑚2+2𝑚−8)
;

(v) the correlation between a pure-quadratic effect column and a two-factor interaction column of a two-level design column
and a three-level design column involving one common three-level factor is ±2

√

2(𝑚−1)(𝑚2−2)
;

(vi) the correlation between a pure-quadratic effect column and a two-factor interaction column of a two-level design column
and a three-level design column involving two different three-level factors is ±(𝑚−1)

√

2(𝑚−1)(𝑚2−2)
or ±(𝑚+3)

√

2(𝑚−1)(𝑚2−2)
.

These results show that for HMDs and JNs, most of the above types of correlations approach to 0 as 𝑚 → ∞, except that the
correlation between two pure-quadratic effect columns of JNs is 1

2 − 1
𝑚−1 tending to 1

2 as (𝑚 → ∞), while that of HMDs is −1
𝑚−1 → 0

as (𝑚 → ∞). This also means that HMDs can estimate the pure-quadratic effects more accurately than JNs.
6
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Table 3
The first-order D-efficiencies of HMDs for non-isomorphic Hadamard matrices.
𝑚 𝑚3 𝑚2 HMDs(1) HMDs(2)

max 𝐷eff min 𝐷eff Average 𝐷eff max 𝐷eff min 𝐷eff Average 𝐷eff

20 1 18 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950
20 2 17 0.9903 0.9898 0.9903 0.9898 0.9898 0.9898
20 3 16 0.9859 0.9843 0.9858 0.9843 0.9843 0.9843
20 4 15 0.9819 0.9787 0.9814 0.9804 0.9784 0.9788
20 5 14 0.9780 0.9727 0.9772 0.9765 0.9736 0.9749
20 6 13 0.9745 0.9666 0.9730 0.9719 0.9680 0.9705

24 1 22 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965
24 2 21 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929
24 3 20 0.9892 0.9892 0.9892 0.9892 0.9892 0.9892
24 4 19 0.9860 0.9856 0.9859 0.9863 0.9852 0.9854
24 5 18 0.9832 0.9826 0.9831 0.9833 0.9821 0.9823
24 6 17 0.9804 0.9796 0.9802 0.9800 0.9789 0.9791
24 7 16 0.9764 0.9759 0.9763 0.9767 0.9755 0.9757

Note: HMDs(1) and HMDs(2) with 𝑚 = 20 are constructed by had.20.pal and had.20.toncheviv, respectively. HMDs(1) and HMDs(2)
with 𝑚 = 24 are constructed by had.24.2 and had.24.23, respectively.

. Discussion and conclusions

In this paper, we construct mixed-level screening designs (HMDs) utilizing Hadamard matrices and the fold-over structure. HMDs
sually require fewer runs than the corresponding JNs and have high D-efficiencies per run for the first-order model. Moreover,
MDs give away the orthogonality between three-level design columns but achieve higher first-order D-efficiencies and first-order
-efficiencies. Therefore, if the experimenters are more concerned about the presence of two-level factors or a low percentage of

hree-level factors in the experiments, then we suggest using HMDs.
It must be said that the proposed method performs well when there are a low proportion of three-level columns (as stated in

heorems 3.1 and 3.2). When there are a substantial proportion of three-level columns, the JNs have higher efficiencies.
Nonisomorphic Hadamard matrices (Shi and Tang, 2018) generate HMDs with different first-order D-efficiencies. As shown

n Table 3, we select two pairs of nonisomorphic Hadamard matrices given in http://neilsloane.com/hadamard/, had.20.pal and
ad.20.toncheviv, had.24.2 and had.24.23, to construct HMDs. Although distinct Hadamard matrices can result in HMDs with
ifferent first-order D-efficiencies, the differences are very small. Thus, in practical applications, we suggest taking any Hadamard
atrix to save computational time. Of course, the issues of how to optimally choose the initial Hadamard matrix and how to arrange

he columns are worth studying.
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ppendix

In this appendix, we provide justifications for Theorems 3.1, 3.2, Propositions 3.3 and 3.4.
To prove the theorems, we need the following lemmas:

emma 1. (i) Let 𝐴 be an 𝑛×𝑛 real symmetric matrix, 𝐴𝑚 be any principal submatrix of order 𝑚 of 𝐴. There are
(𝑛
𝑚

)

principal submatrices,
hen

𝜆min(𝐴) ≤ 𝜆(𝐴𝑚) ≤ 𝜆max(𝐴),

here 𝜆(⋅) is an eigenvalue of the corresponding matrix.
(ii) Let 𝐴 be an 𝑛 × 𝑛 real symmetric matrix, then

min
𝑥≠0

𝑥′𝐴𝑥
𝑥′𝑥

≤ 𝜆(𝐴) ≤ max
𝑥≠0

𝑥′𝐴𝑥
𝑥′𝑥

,

where 𝑥 is an n-dimensional column vector.
(iii) Let 𝐴 and 𝐵 be 𝑛 × 𝑛 real symmetric matrices, then

𝜆min(𝐵) ≤ 𝜆𝑖(𝐴 + 𝐵) − 𝜆𝑖(𝐴) ≤ 𝜆max(𝐵), 𝑖 = 1, 2,… , 𝑛,

where 𝜆 (⋅) is the 𝑖th largest eigenvalue of the corresponding matrix.
7
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(iv) Let 𝐴 and 𝐵 be 𝑛 × 𝑛 real symmetric matrices. If 𝐴 and 𝐵 are positive semidefinite matrices, then

0 ≤ 𝑡𝑟(𝐴𝐵) ≤ 𝑡𝑟(𝐴) ⋅ 𝑡𝑟(𝐵).

Lemma 2. Kantorovich-type inequality (Marshall et al., 2009, P102). If 0 < 𝑚 ≤ 𝑎𝑖 ≤ 𝑀 , 𝑖 = 1, 2,… , 𝑛, then
(

1
𝑛

𝑛
∑

𝑖=1
𝑎𝑖

)(

1
𝑛

𝑛
∑

𝑖=1

1
𝑎𝑖

)

≤ (𝑀 + 𝑚)2

4𝑚𝑀
.

Appendix A. The proof of Theorem 3.1

The design matrix is 𝐷, which has 2𝑚 rows and 𝑚2 + 𝑚3 columns (𝑚2 + 𝑚3 ≤ 𝑚). Denote 𝑋𝐻 as the model matrix for the model
2). For the HMD, without loss of generality, 𝑋𝐻 can be expressed as

𝑋𝐻 =
(

𝟏 𝑋3 𝑋2
𝟏 −𝑋3 −𝑋2

)

,

here the first column corresponds to the intercept term, the columns 2 to 𝑚3 +1, 𝑋3, correspond to the three-level factors, and the
ast 𝑚2 columns, 𝑋2, correspond to the two-level factors. Then, by the construction of the HMD, we have

|𝑋′
𝐻𝑋𝐻 | = 2𝑚2+𝑚3+1𝑚𝑚2+1|

|

|

𝑋′
3𝑋3 −

1
𝑚
𝑋′

3𝑋2𝑋
′
2𝑋3

|

|

|

, (9)

here 𝑋′
2𝑋2 = 𝑚𝐼𝑚2

, the diagonal elements of 𝑋′
3𝑋3 are (𝑚 − 1) s, the off-diagonal elements of 𝑋′

3𝑋3 are 0 s or ±2 s, and all the
lements of 𝑋′

3𝑋2 are ±1 s.
Let 𝑇 = 𝑋′

3𝑋3 −
1
𝑚
𝑋′

3𝑋2𝑋′
2𝑋3 and 𝑋3 = 𝑌1 + 𝑌2, where 𝑌1 is an 𝑚 × 𝑚3 matrix consisting of the first 𝑚3 columns of 𝐻̃ in Step

1. Since 𝑋′
2𝑋2 = 𝑚𝐼𝑚2

, we have 1
𝑚
𝑋′

3𝑋2𝑋′
2𝑋3 = 𝑌 ′

2𝑋2(𝑋′
2𝑋2)−1𝑋′

2𝑌2. Since 0 ≤ 𝜆(𝑌 ′
2𝑋2(𝑋′

2𝑋2)−1𝑋′
2𝑌2) ≤ 1 by Lemma 1(i) and

− 2𝑚3 + 1 ≤ 𝜆(𝑋′
3𝑋3) ≤ 𝑚 + 2𝑚3 − 3 by Lemma 1(ii). Therefore, from Lemma 1(iii), we obtain 𝑚 − 2𝑚3 ≤ 𝜆(𝑇 ) ≤ 𝑚 + 2𝑚3 − 3. Thus,

combining Lemma 2 and 𝑡𝑟(𝑇 ) = (𝑚 − 𝑚2∕𝑚 − 1)𝑚3, we have

|𝑇 | ≥

(

4
(

𝑚 − 2𝑚3
) (

𝑚 + 2𝑚3 − 3
) (

𝑚2 − 𝑚2 − 𝑚
)

𝑚 (2𝑚 − 3)2

)𝑚3

, for 𝑚3 ≤ 𝑚∕3. (10)

Combining (5), (9) and (10), we can obtain (6). Hence, Theorem 3.1 is proved.

Appendix B. The proof of Theorem 3.2

Continuing with the notation in the proof of Theorem 3.1, we have

𝑋′
𝐻𝑋𝐻 =

⎛

⎜

⎜

⎝

2𝑚 𝟎 𝟎
𝟎 2𝑋′

3𝑋3 2𝑋′
3𝑋2

𝟎 2𝑋′
2𝑋3 2𝑋′

2𝑋2

⎞

⎟

⎟

⎠

= 2
(

𝑚 𝟎
𝟎 𝐴

)

,

where 𝐴 =
(

𝑋′
3𝑋3 𝑋′

3𝑋2
𝑋′

2𝑋3 𝑋′
2𝑋2

)

. Thus, the 𝑡𝑟(𝑋′
𝐻𝑋𝐻 )−1 of an HMD can be expressed as

𝑡𝑟(𝑋′
𝐻𝑋𝐻 )−1 = 1∕(2𝑚) + 1∕2 ⋅ 𝑡𝑟(𝐴−1), (11)

where

𝐴−1 =

⎛

⎜

⎜

⎜

⎝

(

𝑋′
3𝑋3 −

1
𝑚
𝑋′

3𝑋2𝑋′
2𝑋3

)−1
∗

∗
(

𝑋′
2𝑋2

)−1 +
(

𝑋′
2𝑋2

)−1 𝑋′
2𝑋3

(

𝑋′
3𝑋3 −

1
𝑚
𝑋′

3𝑋2𝑋′
2𝑋3

)−1
𝑋′

3𝑋2
(

𝑋′
2𝑋2

)−1

⎞

⎟

⎟

⎟

⎠

.

rom Lemma 1(iv), we obtain

𝑡𝑟(𝐴−1) = 𝑚2∕𝑚 + 𝑡𝑟(𝑇 −1) + 1∕𝑚2 ⋅ 𝑡𝑟(𝑋′
2𝑋3𝑇 −1𝑋′

3𝑋2)
≤ 𝑚2∕𝑚 + (1 + 𝑚2𝑚3∕𝑚2)

∑𝑚3
𝑖=1 1∕𝜆𝑖(𝑇 ), for 𝑚3 ≤ 𝑚∕3,

(12)

here 𝑇 = 𝑋′
3𝑋3 −

1
𝑚
𝑋′

3𝑋2𝑋′
2𝑋3. Employing Lemma 2 and 𝑡𝑟(𝑇 ) = (𝑚 − 𝑚2∕𝑚 − 1)𝑚3, we have

𝑚3
∑

𝑖=1
1∕𝜆𝑖(𝑇 ) ≤

𝑚𝑚3(2𝑚 − 3)2

4(𝑚 − 2𝑚3)(𝑚 + 2𝑚3 − 3)(𝑚2 − 𝑚2 − 𝑚)
, for 𝑚3 ≤ 𝑚∕3. (13)

ombining (7), (11), (12) and (13), we can obtain (8).
Hence, Theorem 3.2 is proved.
8
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Appendix C. The proof of Proposition 3.3

Let 𝑥𝑥𝑥𝑓1 , 𝑥𝑥𝑥𝑓2 denote any two distinct three-level design columns in the design matrix of the HMD and 𝑥𝑥𝑥𝑔1 , 𝑥𝑥𝑥𝑔2 denote any two
distinct two-level design columns in the design matrix of the HMD. Let 𝑥∗ denote the average of corresponding column 𝑥𝑥𝑥∗, where
∗∈

{

𝑓1, 𝑓2, 𝑔1, 𝑔2
}

. By the construction of the HMDs, we have 𝑥∗ = 0. Then, the correlation between any two design columns (𝑥∗, 𝑥⋄)
is

𝜌∗,⋄ =
∑2𝑚

𝑖=1 𝑥𝑖,∗𝑥𝑖,⋄
√

∑2𝑚
𝑖=1 𝑥

2
𝑖,∗

√

∑2𝑚
𝑖=1 𝑥

2
𝑖,⋄

,

here ∗, ⋄ ∈
{

𝑓1, 𝑓2, 𝑔1, 𝑔2
}

. By the construction of the HMD, we have ∑2𝑚
𝑖=1 𝑥𝑖,𝑔1𝑥𝑖,𝑔2 = 0, ∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑓1

=
∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑓2

= 2(𝑚 − 1),
∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑔1

= 2𝑚, ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑥𝑖,𝑓2 = 0 or ±4 and ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑥𝑖,𝑔1 = ±2. Therefore, by calculation, Proposition 3.3 is straightforwardly

established.

Appendix D. The proof of Proposition 3.4

Let 𝑥𝑥𝑥𝑓1𝑓1 , 𝑥𝑥𝑥𝑓2𝑓2 denote any two distinct three-level pure-quadratic effect columns in the model matrix of the HMD, 𝑥𝑥𝑥𝑓1𝑓2 , 𝑥𝑥𝑥𝑓2𝑓3
denote any two distinct three-level interaction effect columns in the model matrix of the HMD and 𝑥𝑥𝑥𝑔1𝑔2 , 𝑥𝑥𝑥𝑓1𝑔1 (or 𝑥𝑥𝑥𝑓2𝑔1 ) denote a
two-level factor interaction column and a two-factor interaction column of a three-level design column and a two-level design
column in the model matrix of the HMD, respectively. Let 𝑥∗∗ denote the average of corresponding column 𝑥𝑥𝑥∗∗, where ∗∗∈
𝑓1𝑓1, 𝑓2𝑓2, 𝑓1𝑓2, 𝑓2𝑓3, 𝑔1𝑔2, 𝑓1𝑔1, 𝑓2𝑔1}.

(i) We calculate the correlation between two three-level pure-quadratic effect columns, denoted as 𝜌𝑓1𝑓1 ,𝑓2𝑓2 . By the construction
f the HMD, we have 𝑥𝑓1𝑓1 = 𝑥𝑓2𝑓2 = (𝑚−1)∕𝑚, ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓2 = 2(𝑚−2), ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1 =

∑2𝑚
𝑖=1 𝑥𝑖,𝑓2𝑓2 =

∑2𝑚
𝑖=1 𝑥

2
𝑖,𝑓1𝑓1

= 2(𝑚−1), then
by some simple calculation, we have

2𝑚
∑

𝑖=1
(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓2𝑓2 − 𝑥𝑓2𝑓2 ) =

2𝑚
∑

𝑖=1
𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓2 − 2𝑚(𝑥𝑓1𝑓1 )

2 = −2∕𝑚, (14)

2𝑚
∑

𝑖=1
(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 =
2𝑚
∑

𝑖=1
𝑥2𝑖,𝑓1𝑓1 − 2𝑚(𝑥𝑓1𝑓1 )

2 = 2(𝑚 − 1)∕𝑚. (15)

Substituting them into the expression of correlation, we obtain Proposition 3.4 (i).
(ii) We calculate the correlation between a three-level pure-quadratic effect column and a three-level interaction column

involving one common three-level factor, denoted as 𝜌𝑓1𝑓1 ,𝑓1𝑓2 . By the construction of the HMD, we have 𝑥𝑓1𝑓2 = 0 or ±2∕𝑚. For the
ase with 𝑥𝑓1𝑓2 = 0, the construction of the HMD leads to ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓1𝑓2 = 0, then 𝜌𝑓1𝑓1 ,𝑓1𝑓2 = 0. For the case with 𝑥𝑓1𝑓2 = ±2∕𝑚,
e know that ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓1𝑓2 = ±4, ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1 =

∑2𝑚
𝑖=1 𝑥

2
𝑖,𝑓1𝑓1

= 2(𝑚−1), 𝑥𝑓1𝑓1 = (𝑚−1)∕𝑚, ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓2 = ±4, ∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑓1𝑓2

= 2(𝑚−2),
hen ∑2𝑚

𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓1𝑓2 − 𝑥𝑓1𝑓2 ) = ±4∕𝑚, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 = 2(𝑚 − 1)∕𝑚, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓2 − 𝑥𝑓1𝑓2 )

2 = 2(𝑚2 − 2𝑚 − 4)∕𝑚, thus
𝑓1𝑓1 ,𝑓1𝑓2 = ±2

√

(𝑚−1)(𝑚2−2𝑚−4)
. Thus, Proposition 3.4 (ii) is proved.

(iii) We calculate the correlation between a three-level pure-quadratic effect column and a three-level factor interaction column,
hich involves three different three-level factors, denoted as 𝜌𝑓1𝑓1 ,𝑓2𝑓3 . By the construction of the HMD, we know that 𝑥𝑓2𝑓3 = 0 or
2∕𝑚. The detailed proof for each case is as follows:

For the case with 𝑥𝑓2𝑓3 = 0, it is easy to obtain the following: ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓3= ±2, 𝑥𝑓1𝑓1 = (𝑚 − 1)∕𝑚, ∑2𝑚

𝑖=1 𝑥𝑖,𝑓2𝑓3 = 0,
∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑓2𝑓3

= 2(𝑚 − 2), and ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1 = 2(𝑚 − 1), then ∑2𝑚

𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓2𝑓3 − 𝑥𝑓2𝑓3 ) = ±2, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 = 2(𝑚 − 1)∕𝑚,

nd ∑2𝑚
𝑖=1(𝑥𝑖,𝑓2𝑓3 − 𝑥𝑓2𝑓3 )

2 = 2(𝑚 − 2). Therefore, we obtain 𝜌𝑓1𝑓1 ,𝑓2𝑓3 = ±
√

𝑚
√

(𝑚−1)(𝑚−2)
.

For the case with 𝑥𝑓2𝑓3 = ±2
𝑚 , we have ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓3 = ±6 or ±2. If ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓3 = ±6, by the construction of the HMD,

we know 𝑥𝑓1𝑓1 = (𝑚 − 1)∕𝑚, ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1 = 2(𝑚 − 1), ∑2𝑚

𝑖=1 𝑥𝑖,𝑓2𝑓3 = ±4, and ∑2𝑚
𝑖=1 𝑥

2
𝑖,𝑓2𝑓3

= 2(𝑚 − 2), then ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓2𝑓3 −

𝑥𝑓2𝑓3 ) = ±2(𝑚 + 2)∕𝑚, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 = 2(𝑚 − 1)∕𝑚, and ∑2𝑚
𝑖=1(𝑥𝑖,𝑓2𝑓3 − 𝑥𝑓2𝑓3 )

2 = 2(𝑚2 − 2𝑚 − 4)∕𝑚. Therefore, we obtain
𝑓1𝑓1 ,𝑓2𝑓3 = ±(𝑚+2)

√

(𝑚−1)(𝑚2−2𝑚−4)
. Similarly, if ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑓3 = ±2, we can obtain 𝜌𝑓1𝑓1 ,𝑓2𝑓3 = ±(𝑚−2)
√

(𝑚−1)(𝑚2−2𝑚−4)
. Thus, Proposition 3.4

iii) is proved.
(iv) We calculate the correlation between a three-level pure-quadratic effect column and a two-level factor interaction column,

enoted as 𝜌𝑓1𝑓1 ,𝑔1𝑔2 . By the construction of the HMD, we have 𝑥𝑔1𝑔2 = 0. Further, the construction of the HMD leads to
∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑔1𝑔2 = ±2, 𝑥𝑓1𝑓1 = (𝑚 − 1)∕𝑚, ∑2𝑚
𝑖=1 𝑥𝑖,𝑓1𝑓1 = 2(𝑚 − 1), ∑2𝑚

𝑖=1 𝑥
2
𝑖,𝑔1𝑔2

= 2𝑚, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑔1𝑔2 − 𝑥𝑔1𝑔2 ) = ±2,

∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 = 2(𝑚− 1)∕𝑚, and ∑2𝑚
𝑖=1(𝑥𝑖,𝑔1𝑔2 − 𝑥𝑔1𝑔2 )

2 = 2𝑚. Therefore, we obtain 𝜌𝑓1𝑓1 ,𝑔1𝑔2 = ±1
√

𝑚−1
. Thus, Proposition 3.4 (iv)

s proved.
(v) We calculate the correlation between a three-level pure-quadratic effect column and a two-factor interaction column of a

hree-level factor and a two-level factor involving a common three-level factor, denoted as 𝜌𝑓1𝑓1 ,𝑓1𝑔1 . By the construction of the HMD,
we have 𝑥 = ±1∕𝑚. Further, the construction of the HMD leads to ∑2𝑚 𝑥 𝑥 = ±2, ∑2𝑚 𝑥 = ±2, ∑2𝑚 𝑥2 = 2(𝑚−1),
9
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H
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J
L
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N
P
S
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S
T
W
X

then ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓1𝑔1 − 𝑥𝑓1𝑔1 ) = ±2∕𝑚, ∑2𝑚

𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )
2 = 2(𝑚 − 1)∕𝑚, and ∑2𝑚

𝑖=1(𝑥𝑖,𝑓1𝑔1 − 𝑥𝑓1𝑔1 )
2 = 2(𝑚2 − 𝑚 − 1)∕𝑚.

Therefore, we obtain 𝜌𝑓1𝑓1 ,𝑓1𝑔1 = ±1
√

(𝑚−1)(𝑚2−𝑚−1)
. Thus, Proposition 3.4 (v) is proved.

(vi) We calculate the correlation between a pure-quadratic effect column and a two-factor interaction column of a three-level
design column and a two-level design column involving different three-level factors, denoted as 𝜌𝑓1𝑓1 ,𝑓2𝑔1 . By the construction of
the HMD, we have 𝑥𝑓2𝑔1 = ±1∕𝑚. Further, the construction of the HMD leads to ∑2𝑚

𝑖=1 𝑥𝑖,𝑓1𝑓1𝑥𝑖,𝑓2𝑔1 = 0 or ±4, then ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 −

𝑥𝑓1𝑓1 )(𝑥𝑖,𝑓2𝑔1 − 𝑥𝑓2𝑔1 ) = ±2(𝑚− 1)∕𝑚 or ±2(𝑚+ 1)∕𝑚, ∑2𝑚
𝑖=1(𝑥𝑖,𝑓1𝑓1 − 𝑥𝑓1𝑓1 )

2 = 2(𝑚− 1)∕𝑚, and ∑2𝑚
𝑖=1(𝑥𝑖,𝑓2𝑔1 − 𝑥𝑓2𝑔1 )

2 = 2(𝑚2 −𝑚− 1)∕𝑚.
herefore, we obtain 𝜌𝑓1𝑓1 ,𝑓2𝑔1 = ±(𝑚−1)

√

(𝑚−1)(𝑚2−𝑚−1)
or ±(𝑚+1)

√

(𝑚−1)(𝑚2−𝑚−1)
. Thus, Proposition 3.4 (vi) is proved.
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